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LETTER TO THE EDITOR
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Abstract. Applying a practical density-functional-based perturbation theory, we examine the
phase behaviour of a model system interacting via a hard core plus a square-shoulder repulsion.
For sufficiently narrow shoulders, the theory predicts coexistence between expanded and
condensed isostructural (fcc) crystals, in quantitative agreement with available simulation data.
In contrast to the attractive square-well system, atomic localization is found toincreasewith
increasing temperature.

Recent computer simulations [1, 2] and theoretical studies [3–8] of systems interacting via
extremely short-range pair potentials have produced convincing evidence for a first-order
isostructural phase transition between expanded and condensed solids, the corresponding
phase diagram exhibiting three-phase coexistence between a single fluid phase and the two
solids. Possible physical manifestations of such systems are uncharged colloidal particles
mixed with non-adsorbing polymer, and charge-stabilized colloidal suspensions, whose
macro-ions interact via electrostatic and van der Waals forces [9].

In this letter we employ a combination of density-functional (DF) theory [10] and
thermodynamic perturbation theory to study the phase behaviour of a model system
interacting via a hard core of diameterσ and a repulsive square shoulder of widthδ

and heightε. Since ε scales with temperature, the system is completely characterized
by the single parameterδ/σ . Our goal is to examine the influence of short-range repulsion
on the stability of the solid–solid transition and on the temperature dependence of atomic
localization at high density. Compared with the closely related attractive square-well system
of equal interaction range, the solid–solid critical point is predicted to shift towards higher
densities and lower temperatures. Furthermore, the atoms are found to become increasingly
localized about their lattice sites as the temperature is raised.

The relevant theoretical quantity is the Helmholtz free-energy functionalF [ρ], a
functional of the spatially varying one-particle densityρ(r). For pair potentials including
a steeply repulsive core interaction, thermodynamic perturbation theory [11, 12] accurately
approximatesF [ρ] by decomposing the full pair potentialφ(r) into a repulsive short-range
reference potentialφ0(r) and a relatively weak long-range perturbationφp(r). In our case,
φ0(r) is the hard-sphere (HS) pair potential andφp(r) is a step function of heightε and
rangeσ + δ.

To first order in the perturbation,

F [ρ] ' FHS [ρ] + 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)gHS(r, r′)φp(|r − r′|) (1)
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wheregHS(r, r′) is the pair distribution function of the HS solid. The HS solid free energy
FHS [ρ] separates naturally into an (exactly known) ideal-gas term and an excess term
Fex [ρ]. For the latter, we use the modified weighted-density approximation (MWDA) [13]:

FMWDA
ex [ρ]/N = fHS(ρ̂) (2)

wherefHS(ρ̂) is the excess free energy per particle of theuniform HS fluid evaluated at a
weighted density

ρ̂ ≡ 1

N

∫
dr

∫
dr′ ρ(r)ρ(r′)w(|r − r′|; ρ̂) (3)

defined as aweightedaverage of the physical density with respect to a weight function
w(r), which in turn is specified by the requirement(

δ2FMWDA
ex [ρ]

δρ(r) δρ(r′)

)
ρ(r)→ρ

= −kBT c
(2)
HS(|r − r′|; ρ) (4)

wherec
(2)
HS(|r −r′|; ρ) is the two-particle Ornstein–Zernike direct correlation function. The

fluid-state input functionsfHS and c
(2)
HS we take from the analytic solution of the Percus–

Yevick equation for hard spheres [11].
Pair distributions of the HS crystal have been studied by Monte Carlo simulation, from

which useful parametrizations are available for the translational average ofgHS(r, r′). This
information has been exploited in a simpler perturbation theory approach [8], which ignores
the structure of the solid. In the DF approach, however,gHS(r, r′) itself is required.
Following Likos et al [4], we approximate it by a unit step function:

gHS(r, r′) =
{

0 |r − r′| < σ

1 |r − r′| > σ
(5)

thus excluding self-correlation but otherwise neglecting pair correlations. This mean-field
approximation is expected to be reasonable in the high-density solid, where two-particle
correlations are determined largely by the highly non-uniform one-particle density, which is
strongly peaked about the lattice sites. It is also supported by simulations of the HS crystal
[14] and by DF theory calculations for the Lennard-Jones system [15]. At the very high
solid densities of interest here, the density distribution may be parametrized by the isotropic
Gaussianansatz

ρ(r) =
(α

π

)3/2 ∑
R

e−α|r−R|2 (6)

where the sum runs over the lattice sitesR of the close-packed fcc crystal. Minimization
of the functionalF [ρ] with respect to the single variational parameterα determines the free
energy of the solid.

For a given shoulder width, the solid free energy per volume is computed as a function
of average reduced densityρσ 3 at fixed reduced temperaturekBT /ε. Sufficiently short-
range interactions(δ � σ) induce inflection in the curve ofF/V versusρ that results
in solid–solid phase coexistence. The densities of coexisting phases are established by
means of a Maxwell common-tangent (or equal-area) construction, ensuring equality of the
chemical potentials and pressures in the expanded and condensed solids. Repetition of the
procedure for a series of temperatures systematically maps out the solid–solid coexistence
region in theT –ρ plane.

Predictions of the theory for isostructural solid–solid coexistence are presented in
figure 1, together with recently available Monte Carlo simulation data [2] for comparison.
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Figure 1. The phase diagram of temperature versus density (reduced units) for the square-
shoulder system, exhibiting coexistence between two isostructural (fcc) solids. Solid curves are
theoretical predictions, dashed curves the corresponding simulation data [2] for shoulder widths
δ/σ = 0.03 (rightmost curves) andδ/σ = 0.08 (leftmost curves).

With increasing shoulder width, the solid–solid critical point shifts to lower densities and
the coexistence region widens, while the critical temperature remains relatively constant.
Evidently, the theory slightly overestimates the critical density, but otherwise is in excellent
agreement with simulation. It is worth noting that the square-shoulder phase behaviour
differs significantly from that of the inverted case of a square-well attraction. For a square
well of width δ/σ = 0.03, the same theory predicts a solid–solid critical point at lower
density (ρσ 3 ' 1.3) and higher temperature(kBT /ε ' 2.4), and a considerably wider
coexistence region [16]. Furthermore, the square-shoulder transition remains stable over a
wider range ofδ, as confirmed by simulation [2]. In passing, we mention that we have also
examined the related case of a ‘square-barrier’ pair potential [16]. Separating the square
shoulder from the hard core preserves the solid–solid transition, but shifts the critical point to
significantly lower density and higher temperature. The combination of a square well and a
square barrier is found to considerably enhance the stability of the transition. Furthermore,
we have also investigated other forms of repulsion, such as a linear ramp and quadratic
repulsions, but have found no evidence for solid–solid coexistence in these systems [16].

For the fluid phase, the uniform (constant-ρ) limit of equation (1) represents one
conceivable approximation. In fact, we have explored this, taking for the HS fluid functions
fHS andgHS(r) the essentially exact Carnahan–Starling and Verlet–Weis expressions [11],
respectively. The result, however, in the relevant temperature range near the solid–solid
critical point, is a severe overestimate of the free energy and a corresponding underestimate
of the stability of the fluid phase. Further examination traces the problem to a failure of
the perturbation theory for the fluid. While in the case of the solid the square-shoulder
perturbation constitutes only a small fraction(<10%) of the reference free energy, for the
fluid it makes a considerably larger contribution(>30%). Pending future calculations with
a more accurate theory for the fluid phase, we refrain here from addressing the issue of
fluid–solid coexistence and its implications for the stability of the solid–solid transition.
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Figure 2. The Lindemann ratioL versus the reduced temperaturekBT /ε, for shoulder width
δ/σ = 0.03 and densityρσ 3 = 1.36, illustrating the increasing atomic localization with
increasing temperature for the square-shoulder system.

As an important by-product of the variational DF approach, we obtain also the Gaussian
width parameterα, containing information regarding atomic localization. A more physical
measure is the Lindemann ratioL, defined as the ratio of root mean square atomic
displacement to the nearest-neighbour distance. For the fcc crystal,L = √

(3/α)/a, where
a = (4/ρ)1/3 is the lattice constant. Figure 2 illustrates the characteristic temperature
dependence ofL at fixed density, revealing anincreasein atomic localization with increasing
temperature. This clearly goes against usual intuition, according to which increasing
temperature results in thermal disordering of atomic positions. It may be readily explained,
however, by noting that at high densities the nearest-neighbour distance lies inside the range
of the repulsive shoulder. As the temperature is lowered, or equivalently as the height of
the shoulder is raised, the system can lower its internal energy if it responds by broadening
the atomic density distribution, thus spreading more of the distribution outside the range of
the energetically unfavourable shoulder.

Summarizing, we have demonstrated that a relatively simple density-functional
perturbation theory predicts for repulsive square-shoulder interactions of sufficiently short
range a first-order isostructural solid–solid transition ending in a critical point, in quantitative
agreement with available simulation data. For this purely repulsive system, the theory further
predicts an increase in atomic localization with increasing temperature. Whether or not the
remarkable phase behaviour exhibited by this model system can be observed experimentally
is not yet clear. The present study, however, may help to resolve the issue by guiding the
parametrization of more realistic pair potentials that better model the interactions in real
colloidal systems. Work along these lines is in progress.

We gratefully acknowledge Drs A M Bohle and C N Likos for helpful discussions and Dr
P Bolhuis for kindly providing the simulation data for the square-shoulder system prior to
publication.
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